Direkt zum Inhalt
Pilotprojekt

Busspuren – Langlebiger mit UHFB

Pilotprojekt für mehr Langlebigkeit: Ein Forschungsteam der Hochschule München hat erstmalig in Deutschland die Fahrspuren einer Bushaltestelle aus Ultra-Hochleistungs-Faser-Beton (UHFB) hergestellt.

In einem mehrschichtigen Verfahren wird der Ultra-Hochleistungs-Faser-Beton auf die Fahrbahn aufgetragen.
In einem mehrschichtigen Verfahren wird der Ultra-Hochleistungs-Faser-Beton auf die Fahrbahn aufgetragen.

Das Pilotprojekt zeigt eine Möglichkeit auf, Fahrrillenbildung zu reduzieren und stark frequentierte Haltestellen deutlich langlebiger zu machen.

Fahrspuren von Bushaltestellen sind großer Belastung ausgesetzt und benötigen eine regelmäßige Neuasphaltierung aufgrund von Schäden und Abnutzung. Ein Forschungsteam der Hochschule München hat nun in Zusammenarbeit mit der Stadt München eine Bushaltestelle am Olympia-Einkaufszentrum mit Ultra-Hochleistungs-Faser-Beton (UHFB) hergestellt, um die Vorteile des Materials für diese Anwendung zu nutzen.

Deutlich erhöhte Langlebigkeit durch Spezialbeton

Für die Fahrspuren in der Pelkovenstraße und der Hanauer Straße an der Bushaltestelle „Olympia-Einkaufszentrum“ kam der Baustoff UHFB zum Einsatz. Dieser weist eine außergewöhnlich hohe Festigkeit und Dichte auf, was zu einer erheblich längeren Haltbarkeit und geringem Verschleiß führt. Durch die Beimischung von Fasern aus Stahl entstehen nur sehr kleine Risse. Diese Eigenschaft verbessert das Tragverhalten und verlangsamt Fahrrillenbildung.

Circa 16 mm lange Stahlfasern werden dem Beton beigemischt, unter anderem für eine erhöhte Festigkeit und Dichtigkeit.
Circa 16 mm lange Stahlfasern werden dem Beton beigemischt, unter anderem für eine erhöhte Festigkeit und Dichtigkeit.
Anzeige

Leiter des Transferprojekts, Prof. Dr. Jörg Jungwirth von der Fakultät für Bauingenieurwesen der HM, betont dabei: „Trotz höherer Herstellungskosten im Vergleich zu konventionellen Asphaltbelägen fallen die Gesamtkosten über die Lebensdauer des Bauwerks deutlich geringer aus, denn die Dauerhaftigkeit der Fahrspuren erhöht sich von nur ein bis zwei Jahren auf voraussichtlich mehrere Jahrzehnte.“

Zukunftsweisendes Pilotprojekt

Das Forschungsprojekt entstand in enger Zusammenarbeit mit dem Baureferat der Stadt München, dem Planungsbüro Färber und der Baufirma Implenia. Die Fahrspur der Bushaltestelle am Olympiaeinkaufszentrum wurde im Sommer 2023 realisiert und dem Verkehr übergeben. Seitdem betreibt das HM-Forschungsteam ein Monitoring zu Tragverhalten und Dauerhaftigkeit der Fahrbahn. Untersucht werden dabei die Druck- und Zugfestigkeit sowie das Rissbildungs- und Verformungsverhalten. Laut Jungwirth bestätigt sich bisher die erhoffte Dauerhaftigkeit: „Wir sind mit den bisherigen Kontrollergebnissen sehr zufrieden und sind zuversichtlich, dass eine Übertragung des Systems auf andere hochbelastete Flächen, wie Kreisverkehre, Industrieböden oder Flugverkehrsflächen, möglich ist.“

Die Rillenoberfläche sorgt für eine erhöhte Griffigkeit.
Die Rillenoberfläche sorgt für eine erhöhte Griffigkeit.

Neben der erhöhten Belastungstoleranz überzeugt der Einsatz von UHFB auch durch gesteigerte Frostbeständigkeit, einen hohen Widerstand gegen Tausalze, Wasserdichte, sowie hohe Robustheit durch ein großes Verformungsvermögen. Trotz der deutlichen Vorteile wird diese Bauweise in Deutschland bisher kaum eingesetzt, da sie noch nicht baurechtlich geregelt ist. Ziel des Pilotprojekts ist es, anstelle einer aufwendigen Einzelfallzulassung die flächendeckende Nutzung von UHFB zu ermöglichen. (HS/RED)

Passend zu diesem Artikel

Schäden an Betonbauwerken verbergen sich oft unter der Oberfläche. Mit laserinduziertem Körperschall lassen sich diese Fehlstellen effizient aufspüren und automatisiert auswerten – genauer als dies mit der heute üblichen Hammerschlagmethode möglich ist. Messungen zeigen, dass dies auch unter
 Laser statt Hammer

Im Zuge einer neuen Methode zur Integritätsprüfung von Bauwerken wird es zukünftig möglich sein, auch tieferliegende Schadstellen mithilfe von Lasern aufzuspüren. Ein Forschungsteam am Fraunhofer IPM hat ein System entwickelt, das zerstörungsfreie Delaminationsprüfungen mithilfe eines gepulsten Lasers ermöglicht.